
Value Function Approximation
through Sparse Bayesian Modeling

Nikolaos Tziortziotis and Konstantinos Blekas

Department of Computer Science, University of Ioannina,
P.O. Box 1186, 45110 Ioannina, Greece
{ntziorzi,kblekas}@cs.uoi.gr

Abstract. In this study we present a sparse Bayesian framework for value func-
tion approximation. The proposed method is based on the on-line construction
of a dictionary of states which are collected during the exploration of the envi-
ronment by the agent. A linear regression model is established for the observed
partial discounted return of such dictionary states, where we employ the Rele-
vance Vector Machine (RVM) and exploit its enhanced modeling capability due
to the embedded sparsity properties. In order to speed-up the optimization pro-
cedure and allow dealing with large-scale problems, an incremental strategy is
adopted. A number of experiments have been conducted on both simulated and
real environments, where we took promising results in comparison with another
Bayesian approach that uses Gaussian processes.

Keywords: Value function approximation, Sparse Bayesian modeling, Relevance
Vector Machine, Incremental learning.

1 Introduction

Reinforcement learning (RL) [13] aims at controlling an autonomous agent in an envi-
ronment which is usually unknown. The agent is only aware of a reward signal that is
applied to it when acting with the environment. In this manner, the actions are evaluated
and the learning process is designed on choosing the action with the optimum expected
return. The goal of RL is to discover an optimal policy, where in most cases this is
equivalent to estimating the value function of states. A plethora of methods has been
proposed in the last decades using a variety of value-function estimation techniques
[5]. Algorithms such as the Q-learning [18] and Sarsa [9,12] try to estimate the long-
term expected value of each possible action given a particular state by choosing actions
with the maximum value. However, these methods have some drawbacks that prevent
them from using in large or continuous state spaces of real-world applications. Value
function approximation approaches offer a nice solution to this problem. Least-squares
temporal-difference (LSTD) learning [2] is a widely used algorithm for value function
learning of a fixed policy. Also, the least-squares policy-iteration (LSPI) method [6]
extends the LSTD by using it in the policy evaluation step of policy estimation.

Recently, kernelized reinforcement learning methods have been paid a lot of atten-
tion by employing all the benefits of kernel techniques [14]. In this manner, standard RL
methods have been extended by mapping to kernel spaces, see for example [20,19]. One

S. Sanner and M. Hutter (Eds.): EWRL 2011, LNCS 7188, pp. 128–139, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Value Function Approximation through Sparse Bayesian Modeling 129

particularly elegant Bayesian RL formulation is the Gaussian Process Temporal Differ-
ence (GPTD) [3], that constitutes an efficient adaptation of the Gaussian processes to
the problem of online value-function estimation. The GPTD employs a probabilistic
generative model for the state value function, and the solution to the inference problem
is given by the posterior distribution conditioned on the observed sequence of rewards.
An on-line kernel sparsification algorithm has also been proposed in [3], by incremen-
tally constructing an appropriate dictionary of representative states. Finally, the Kalman
Temporal Differences (KTD) framework has been introduced only recently [4], where
the value function approximation is stated as a filtering problem and nonstationarities
are allowed through the specification of some evolution model for parameters.

In this study an alternative Bayesian scheme for value function approximation is
presented. The key aspects of our method are the creation of a state dictionary and the
partial discounted return which corresponds to the accumulated reward between two
states that get placed in the dictionary. The advantages of this approach are threefold.
First, it achieves a reduced computational complexity, since our analysis deals only
with the states which are stored in the dictionary. At a second level, it manages to
avoid making approximations when dealing with large-scale problems, as in the case of
GPTD method for calculating the kernel covariance matrix. Finally, it offers enhanced
modeling capabilities due to the embedded sparsity model properties. More specifically,
the proposed method addresses the problem of value function approximation by appro-
priately creating a linear regression model. Training this model is achieved through a
sparse Bayesian methodology [15,11] that offers many advantages in regression. En-
forcing sparsity is a fundamental machine learning regularization principle that causes
to obtain more flexible inference methods. In sparse Bayesian regression we employ
models having initially many degrees of freedom, where we apply a heavy tail prior
over coefficients. After training, only few coefficients will be maintained, since they
will be automatically considered as significant. This is equivalent to retaining only a
part of the dictionary which will be responsible for estimating the value function and
designing the optimum policy. Furthermore, we have used a computationally efficient
incremental strategy that presented in [16], in order to accelerate the optimization pro-
cedure. The proposed method was tested on a suite of benchmarks including known
simulated environments, as well as real environments using a PeopleBot mobile robot.
Comparison has been made using the sparse on-line version of the GPTD algorithm.

In section 2, we briefly describe the Markov Decision Processes (MDPs) and the
GPTD method as a Bayesian framework for value function approximation. The pro-
posed sparse regression model is then presented in section 3, along with an incremental
learning procedure. To assess the performance of our methodology we present in section
4 numerical experiments with artificial and real test environments. Finally, in section 5
we give conclusions and suggestions for future research.

2 Markov Decision Processes and GPTD

In the most standard formulation of the problem, the environment where an agent acts,
is modeled as a Markov Decision Process (MDP) [13]. A MDP is denoted as a tuple
{S,A, R, P, γ}, where S and A are the state and action spaces, respectively; R is a

130 N. Tziortziotis and K. Blekas

reward function that specifies the immediate reward for each transition; P is the state
transition distribution; and γ ∈ [0, 1] is a discount factor that determines the importance
of current and future rewards. A stationary policy π defines a probability distribution
over the action space condition on the states and can be seen as a mapping π : S ×
A → [0, 1]. The discounted return D(s) for a state s under a policy π, having a policy
dependent state transition probability distribution pπ(·|st), is given by

D(s) =
∞∑

t=0

γtR(st)|s0 = s . (1)

This can be written more concisely as

D(s) = R(s) + γD(s′) , where s′ ∼ pπ(·|s). (2)

The objective of RL problems is to estimate an optimal policy π∗ which maximize
the expected discounted return, V π(s) = Eπ [D(s)]. This can be translated into a value
function approximation problem, according to the following recursive formulation:

V π(s) = Eπ [R(st) + γV π(st+1)|st = s] . (3)

Equation 3 is the Bellman equation for V π which expresses a relationship between the
values of current and next state. Alternatively, the state-action value function usually
used to facilitate policy improvement. This is the expected discounted return starting
from state s, taking the action a and then following the policy π:

Qπ(s, a) = Eπ

[∞∑

t=0

γtR(st)|s0 = s, a0 = a

]
. (4)

Having found the optimal action-state value function Q∗, the optimal policy is given by
π∗(s) = argmaxa Q

∗(s, a).
Gaussian Processes [8] have recently been used as a Bayesian framework for model-

ing RL tasks. Gaussian Process Temporal Difference (GPTD) [3] is based on describing
the value function as a Gaussian process. In particular, a decomposition of the dis-
counted return D(s) is first considered into its mean value and a zero mean residual:

D(s) = V (s) + (D(s)− V (s)) = V (s) +ΔV (s) . (5)

By combining Eqs. 5, 2 we obtain the following rule:

R(s) = V (s)− γV (s′) +N(s, s′) , (6)

where N(s, s′) = ΔV (s)−γΔV (s′) is the difference between residuals. Given a sam-
ple trajectory of states {s1, . . . , st}, the model results in a set of t− 1 linear equations

Rt = HtVt +Nt, (7)

Value Function Approximation through Sparse Bayesian Modeling 131

where Rt, Vt, Nt are vectors of rewards, value functions and residuals, respectively.
Additionally, the Ht is a matrix of size (t− 1)× t and is given by

Ht =

⎡

⎢⎢⎢⎣

1 −γ 0 · · · 0
0 1 −γ · · · 0
...

...
0 0 · · · 1 −γ

⎤

⎥⎥⎥⎦ . (8)

By considering the above equation as a Gaussian Process, a zero-mean Gaussian
prior is assumed over the value functions Vt, i.e., Vt ∼ N (0,Kt), where Kt is a kernel
covariance matrix over states. Also, the residuals Nt is assumed to be zero-mean Gaus-
sian, Nt ∼ N (0, Σt), where the covariance matrix is calculated as Σt = σ2

tHtH
�
t . In

this way, at each time a state s is visited, the value function of the state is given by the
posterior distribution, which is also Gaussian, (V (s)|Rt) ∼ N (V̂ (s), pt(s)), where

V̂ (s) = kt(s)
�αt, αt = H�

t (HtKtH
�
t +Σt)

−1Rt,

and pt(s) = k(s, s)− kt(s)
�Ctkt(s), Ct = H�

t (HtKtH
�
t +Σt)

−1Ht.

A limitation to the application of the GPTD is the computational complexity that in-
creases linearly with time t. To solve this problem, an on-line kernel sparsification al-
gorithm has been proposed in [3] which is based on the construction of a dictionary
of representative states, Dt−1 = {s̃1, . . . , s̃dt−1}. An approximate linear dependence
(ALD) analysis is performed in order to examine whether or not a visited state st must
be entered into the dictionary. This is achieved according to a least squares problem,
where we test if the image of the candidate state, φ(st), can be adequately approxi-
mated by the elements of the current dictionary [3], i.e.

δt = min
a

∥∥∥∥∥∥

∑

j

ajφ(s̃j)− φ(st)

∥∥∥∥∥∥

2

≤ ν, (9)

where ν is a positive threshold that controls the level of sparsity. The sparse on-line
version of GPTD makes further approximations for calculating the kernel matrix Kt,
where it uses only the dictionary members for this purpose; for more details see [3].

3 The Proposed Method

An advanced methodology to the task of control learning is presented in this section
that employs the Relevance Vector Machine (RVM) [15] generative model for value
function approximation. We start our analysis by taking into account the stationarity
property of the MDP, which allows us to rewrite the discounted return of Eq. 1 at time
step t as

D(st) = R(st) + γktD(st+kt), (10)

where R(st) =
∑kt−1

j=0 γjR(st+j) is the partial discounted return of a state-reward
subsequence. The term kt denotes the time difference between two states that have

132 N. Tziortziotis and K. Blekas

been observed. According to the Eq. 5, the discounted return can be decomposed into
its mean and a zero-mean residual. Considering this assumption and substituting Eq. 5
into Eq. 10 leads us to the following rule:

R(st) = V (st)− γktV (st+kt) +N(st, st+kt), (11)

where N(st, st+kt) = ΔV (st)− γktΔV (st+kt) is the residuals difference.
Thus, assuming a dictionary of n states Dt = {s̃1, . . . , s̃n}, we obtain a set of n− 1

equations:

R(s̃i) = V (s̃i)− γkiV (s̃i+1) +N(s̃i, s̃i+1), for i = 1, . . . , n− 1 , (12)

which can be written more concisely as

Rn = HnVn +Nn, (13)

where Rn = (R(s̃1), . . . ,R(s̃n−1))
T , Vn = (V (s̃1), . . . , V (s̃n))

T and Nn =
(N(s̃1, s̃2), . . . , N(s̃n−1, s̃n))

T . The matrix Hn is of size (n − 1) × n and has the
following form

Hn =

⎡

⎢⎢⎢⎣

1 −γk1 0 · · · 0
0 1 −γk2 · · · 0
...

...
0 0 · · · 1 −γkn−1

⎤

⎥⎥⎥⎦ . (14)

Moreover, we assume that the (hidden) vector of the value functions is described
with the functional form of a linear model

Vn = Φnwn , (15)

where wn is the vector of the n unknown model regression coefficients.
Φn = [φT

1 . . .φT
n] is a kernel ‘design’ matrix that contains n basis functions φi,

where the values of their components have been calculated using a kernel function
φi(s̃j) ≡ k(s̃i, s̃j). It must be noted that during our experimental study we have con-
sidered Gaussian type of kernels governed by a scalar parameter (kernel width). Thus,
Eq. 13 can be written as

Rn = HnΦnwn +Nn, (16)

that can be further simplified as:

yn = Φnwn + en . (17)

The above equation describes a linear regression model that fits the modified ob-
servations, yn = (H�

n Hn)
−1H�

n Rn. The term en plays the role of the stochastic
model noise and is assumed to be a zero-mean Gaussian with precision βn, i.e. en ∼
N (0, β−1

n I). Under this prism, the conditional probability density of the sequence yn

is also Gaussian, i.e.

p(yn|wn, βn) = N (yn|Φnwn, β
−1
n I). (18)

Value Function Approximation through Sparse Bayesian Modeling 133

An important issue is how to define the optimal order of the above regression model.
Sparse Bayesian methodology offers an advanced solution to this problem by penalizing
large order models. This is the idea behind the Relevance Vector Machines (RVM)
[15]. More specifically, a heavy-tailed prior distribution, p(wn), is imposed over the
regression coefficients wn to zero out most of the weights wni after training. This is
achieved in an hierarchical way: First, a zero-mean Gaussian distribution is considered

p(wn|αn) = N (wn|0, A−1
n) =

n∏

i=1

N (wni|0, α−1
ni), (19)

where An is a diagonal matrix containing the n elements of the precision vector αn =
(αn1, . . . , αnn)

�. At a second level, a Gamma hyperprior is imposed over each hyper-
parameter, αni,

p(αn) =

n∏

i=1

Gamma(αni|a, b). (20)

It must be noted that both Gamma parameters a, b, are a priori set to zero in order to
make these priors uninformative.

This two-stage hierarchical prior is actually a Student’s-t distribution that provides
sparseness to the model [15], since it enforces most of the parameters αni to become
large and as a result the corresponding weights wni are set to zero. In this way, the
complexity of the regression models is controlled automatically, while at the same time
over-fitting is avoided. Furthermore, we can obtain the marginal likelihood distribution
of sequence yn by integrating out the weights wn. This gives a zero mean Gaussian:

p(yn|αn, βn) =

∫
p(yn|wn, βn)p(wn|αn)dw = N (0, Cn), (21)

where the covariance matrix has the form, Cn = ΦnA
−1
n Φ�

n + β−1
n I .

From the Bayes rule, the posterior distribution of the weights can be also obtained as
[15]:

p(wn|yn,αn, βn) = N (wn|μn, Σn), (22)

where
μn = βnΣnΦ

�
n yn, Σn = (βnΦ

�
nΦn +An)

−1. (23)

The maximization of the log-likelihood function of Eq. 21, leads to the following
update rules for the model parameters [15]:

αni =
γi
μ2
ni

, (24)

β−1
n =

‖yn − Φnμn‖2
n−∑n

i=1 γi
, (25)

where γi = 1−αni[Σn]ii and [Σn]ii is the i-th diagonal element of the matrixΣn. Thus,
Equations 23, 24 and 25 are applied iteratively until convergence. The mean values of
weights, μn, are finally used for the value function approximation of a state s, i.e.
Ṽ (s) = φ(s)Tμn, where φ(s) = (k(s, s̃1), . . . , k(s, s̃n))

T .

134 N. Tziortziotis and K. Blekas

3.1 Incremental Optimization

The application of RVM in large scaling problem is problematic, since it requires the
computation of matrix Σn in Eq. 23. In our case this is happening when the size of the
dictionary (n) becomes large. To deal with this problem we can follow an incremental
learning algorithm that has been proposed in [16]. The method initially assumes that
all states in the dictionary (all basis functions) have been pruned due to the sparsity
constraint. This is equivalent to assuming that αni = ∞, ∀i = {1, . . . , n}. Then, at
each iteration a basis function is examined whether to be either added to the model, or
removed from the model, or re-estimated. When adding a basis function, the value of
the hyperparameter αni is estimated according to the maximum likelihood criterion.

In particular, it is easily to show that the term of the marginal likelihood of Eq. 21
which referred to the single parameter αni is [16]

(αni) =
1

2

(
logαni − log(αni + sni) +

q2ni
αni + sni

)
, (26)

where

sni =
αniSni

αni − Sni
, qni =

αniQni

αni − Sni
, (27)

and Sni = φ�
i C

−1
n φi, Qni = φ�

i C
−1
n yn, φi = (φi(s̃1), . . . , φi(s̃n))

�. Note that in
this manner the matrix inversion is avoided by using the Woodbury identity [16]. It has
been shown in [16] that the log-likelihood has a single maximum at:

αni =
s2ni

q2ni − sni
, if q2ni > sni, (28)

αni = ∞, if q2ni ≤ sni. (29)

Thus, a basis function φi is added (and so the corresponding state of the dictionary
becomes active) in the case of q2ni > sni. In the opposite case, this basis function is
removed.

3.2 Working in Episodic Tasks and Unknown Environments

So far we have focused on solving continuing tasks, where the agent is placed initially to
a random state and then is let to wander-off indefinitely. Since most of the RL tasks are
episodic, a modification to our approach is needed to meet these requirements. During
episodic tasks the agent will reach a terminal state within a finite number of steps. After
that, a new episode (epoch) begins by placing the agent to a random initial position. An
absorbing state may be thought as a state that only zero-rewards are received and that
each action plays no role. In this case, the partial discounted return R(s̃n) of the last
inserted state (s̃n) in an episode, is actually the discounted return D(s̃n), itself. Also,
the discount factor γ for the subsequent dictionary state (s̃n+1) will be set to zero. Thus,
the matrix Hn+1 will take the following form

Value Function Approximation through Sparse Bayesian Modeling 135

Hn+1 =

⎡

⎢⎢⎢⎢⎢⎣

1 −γk1 0 · · · 0 0
0 1 −γk2 · · · 0 0
...

...
...

...
0 0 · · · 1 −γkn−1 0
0 0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎦
. (30)

This new form of the matrix H is the only modification to our approach in order to deal
with episodic tasks.

Finally, in our study we have considered transitions between state-action pairs in-
stead of single states, since the model environment is completely unknown. This is
achieved by determining the kernel function as a product of state kernel ks and action
kernel ka, i.e. k(s, a, s′, a′) = ks(s, s

′)ka(a, a′) (legitimate kernel [10,1]). Therefore,
we have considered the approximation of the optimal state-value function Q.

4 Experimental Results

The performance of our model (called as RVMTD) has been studied to several simu-
lated and real environments. In all cases, two evaluation criteria have been used: the
mean number of steps, as well as the mean return with respect to episodes. Comparison
has been made with the on-line GPTD algorithm [3]. It must be noted that both meth-
ods use the same criterion for adding a new state to the dictionary (Eq. 9) with the same
threshold parameter ν. Also, the proper value for the scalar parameter of the Gaussian
kernel in each problem was found experimentally. However, in some cases (mostly on
simulated environments) the sensitivity of the performance of both approaches to this
parameter was significant. Finally, in all cases, the decay parameter γ was set to 0.99.

4.1 Experiments on Simulated Environments

The first series of experiments was made using two well-known benchmarks 1. The
first one is the mountain car [7], where the objective of this task is to drive an under-
powered car up a steep mountain road from a valley to tophill, as illustrated in the
Fig. 1(a). Due to the force of gravity, the car cannot accelerate up to the tophill and
thus it must go to the opposite slope to acquire enough momentum, so as to reach the
goal on the right slope. The environmental states consist of two continuous variables:
the position (pt ∈ [−1.5,+0.5]) and the current velocity (vt ∈ [−0.07, 0.07]) of the
car. Initially, the car is standing motionless (v0 = 0) at the position p0 = −0.5. At
each time step, it receives a negative reward r = −1. Three are the possible actions:
+1 (full throttle forward), -1 (full throttle reverse) and 0 (zero throttle). An episode is
terminated either when the car reaches the goal at the right tophill, or the total number
of steps exceeds a maximum allowed value (1000). The state kernel ks was set as ks =

k(s, s′) = exp
(
−∑2

i=1(si − s′i)
2/(2σ2

i)
)

, where σ2
1 = 5×10−2 and σ2

2 = 5×10−4.

On the other hand we have used a simple action kernel of type: 1 when the actions
are the same, 0.5 when differs by one and 0 otherwise. Finally, the parameter ν that

1 Both simulators have been downloaded from http://www.dacya.ucm.es/jam/download.htm

136 N. Tziortziotis and K. Blekas

specifies the sparsity of our model was set to ν = 0.001, resulting in a dictionary that
contains about 150 states.

Another test environment is the famous cart pole shown in Fig. 2(a), where the ob-
jective is to keep the pole balanced and the cart within its limits by applying a fixed
magnitude force either to the left or to the right. The states consists of four contin-
uous variables: the horizontal position (x) and the velocity (ẋ) of the cart, and the
angle (θ) and the angular velocity (θ̇) of the pole. There are 21 possible discrete ac-
tions from -10 to 10, while the reward received by the environment takes the form
r = 10 − 10|10θ|2 − 5|x| − 10θ̇. The cart is initially positioned in the middle of the
track having zero velocity, and the pole is parallel to the vertical line having veloc-
ity θ̇ = 0.01. An episode terminates when either the cart moves off the track, or the
pole falls, or the pole is successfully balanced for 1000 time steps. Similarly, we have
considered a Gaussian state kernel with different scalar parameter (σ2

i) per variable:
σ2
1 = 2, σ2

2 = 0.5, σ2
3 = 0.008 and σ2

4 = 0.1. The action kernel was also Gaussian with
variance, σ2 = 1. Finally, the parameter ν was set to 0.1, resulting in a dictionary of
size 100.

The depicted results on these problems are illustrated in Figs. 1 and 2, respectively.
As it is obvious our method achieves to find the same or improved policy in comparison

0 100 200 300 400 500
10

2

10
3

Episodes

M
ea

n
N

um
be

r
of

 S
te

ps
 in

 th
e

La
st

 1
00

 E
pi

so
de

s

RVMTD
GPTD

0 100 200 300 400 500
−10

3

−10
2

Episodes

M
ea

n
R

et
ur

ns
 o

f t
he

 L
as

t 1
00

 E
pi

so
de

s

RVMTD
GPTD

(a) mountain car (b) Mean number of steps (c) Mean return

Fig. 1. Experimental results with the mountain car simulator

0 100 200 300 400 500
0

200

400

600

800

1000

Episodes

M
ea

n
N

um
be

r
of

 S
te

ps
 in

 th
e

La
st

 1
00

 E
pi

so
de

s

RVMTD
GPTD

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1
x 10

4

Episodes

M
ea

n
R

et
ur

ns
 o

f t
he

 L
as

t 1
00

 E
pi

so
de

s

RVMTD
GPTD

(a) cart pole (b) Mean number of steps (c) Mean return

Fig. 2. Experimental results with the cart pole simulator

Value Function Approximation through Sparse Bayesian Modeling 137

(a) PeopleBot (b) Stage world S1 (c) Stage world S2

Fig. 3. The mobile robot and the 2D-grid maps used in our experiments. These are two snapshots
from the simulator with visualization of the robot’s laser and sonar range scanner.

with the online GPTD. However, our approach has the tendency to convergence to the
optimum solution much faster than GPTD. Especially in the case of the cart-pole, only
a few episodes were capable of reaching the optimum policy with a smaller in size
dictionary. It is interesting to note that, although both approaches converged to almost
the same policy, the GPTD method requires a larger dictionary (almost double size), as
well as higher execution time.

4.2 Experiments on a Mobile Robot

The performance of the proposed method have also been studied to a PeopleBot mobile
robot, shown in Fig. 3, which is based on the robust P3-DX base. This is a wheeled
mobile robot occupied with advanced tools for communication, through the ARIA (Ad-
vanced Robot Interface for Applications) library and various sensors, such as sonar,
laser and a pan-tilt camera. In this work, only the sonar and laser sensors were used for
obstacle avoidance. There is also available the MobileSim simulation environment built
on the Stage platform which manages to simulate the real environment with satisfactory
precision2.

Two different grid maps (stage worlds) have been selected during our experiments,
as shown in Fig.3. Note that the first one was obtained by mapping our laboratory using
the PeopleBot robot and the MobileEyes software. In this study, the objective is to find a
steady landmark (shown with a rectangular box in both maps of Fig.3) starting from any
position in the world with the minimum number of steps. The robot receives a reward of
-1 per time step, except when it finds an obstacle where the reward is -100. In our study
we have discretized the action space into the 8 major compass winds, while the length
of each step was 0.5m. Also, the maximum allowed number of steps per episode was set
to 100. Finally, we have used a Gaussian type of kernel for the environmental state with
a scalar parameter value σ2 = 1. The action kernel takes 4 possible values: 1 (when
actions are the same), 0.6 (when differs 45◦), 0.3 (when differs 90◦), 0 (otherwise).
Note that, while we have used the same state kernel for both methods, in the case of the

2 more details can be found at http://robots.mobilerobots.com/wiki/MobileSim

138 N. Tziortziotis and K. Blekas

0 100 200 300 400
−120

−100

−80

−60

−40

−20

0

Episodes

M
ea

n
R

et
ur

ns
 o

f t
he

 L
as

t 1
00

 E
pi

so
de

s

RVMTD
GPTD

0 100 200 300 400 500
−140

−120

−100

−80

−60

−40

−20

0

Episodes

M
ea

n
R

et
ur

ns
 o

f t
he

 L
as

t 1
00

 E
pi

so
de

s

RVMTD
GPTD

(a) Results on world S1 (b) Results on world S2

Fig. 4. Plots of the mean return as estimated by both methods in two maps

RVMTD policy GPTD policy

Fig. 5. Learned policies by both comparative methods in the case of test world S1

online GPTD we have adopted the action kernel function described in [3], since it gave
better performance.

The experimental results of the two worlds are shown in Fig. 4 which gives the plots
of the mean returns received by the agent in the last 100 episodes. Obviously, the pro-
posed method manages to discover a more optimal policy in a higher rate in comparison
with the GPTD. This is more apparent in Fig. 5, where we show the estimated trajec-
tories following the learned policy of each method during studying the stage word S1

(Fig. 3b). In the proposed method, the robot is close to the optimal path between any
start point and destination (target), and as a result it reaches the destination reliably and
faster. We took the same performance behavior with the other stage word S2 of Fig. 3.

5 Conclusions

In this paper we have proposed an advanced methodology for model-free value func-
tion approximation using the RVM regression framework as the generative model.
The key aspect of the proposed technique lies on the introduction of the partial dis-
counted returns that are observed during the creation of a state dictionary. This sequen-
tial data of rewards is modeled using a sparse Bayesian framework as employed by
the RVM method that incorporates powerful modeling properties. We have also applied
an incremental learning strategy that accelerates the optimization procedure and makes
the method to be practical for large scale problems. As experiments have shown, our

Value Function Approximation through Sparse Bayesian Modeling 139

method is able to achieve better performance and to learn significantly more optimal
policies. A future research direction to our study is to further improve the regression
method and the kernel design matrix specification, by incorporating a mechanism for
adapting the scale parameter of the Gaussian kernel function [17]. Another interesting
topic for future study is to work on different schemes for the on-line dictionary con-
struction that allowing the dictionary to be dynamically adjusted during learning.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)
2. Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference learning.

Machine Learning 22, 33–57 (1996)
3. Engel, Y., Mannor, S., Meir, R.: Reinforcement learning with gaussian process. In: Interna-

tional Conference on Machine Learning, pp. 201–208 (2005)
4. Geist, M., Pietquin, O.: Kalman Temporal Differences. Journal of Artificial Intelligence Re-

search 39, 483–532 (2010)
5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of

Artificial Inteligence Research 4, 237–285 (1996)
6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Re-

search 4, 1107–1149 (2003)
7. Moore, A.: Variable resolution dynamic programming: Efficiently learning action maps in

multivariate real-valued state-spaces. In: Machine Learning: Proceedings of the Eighth Inter-
national Conference. Morgan Kaufmann (June 1991)

8. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)
9. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems. Tech. rep.,

Cambridge University Engineering Department (1994)
10. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press (2002)
11. Seeger, M.: Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal of

Machine Learning Research 9, 759–813 (2008)
12. Singh, S., Sutton, R.S., Kaelbling, P.: Reinforcement learning with replacing eligibility

traces. Machine Learning, 123–158 (1996)
13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge

(1998)
14. Taylor, G., Parr, R.: Kernelized value function approximation for reinforcement learning. In:

International Conference on Machine Learning, pp. 1017–1024 (2009)
15. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of Ma-

chine Learning Research 1, 211–244 (2001)
16. Tipping, M.E., Faul, A.C.: Fast marginal likelihood maximization for sparse bayesian mod-

els. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statis-
tics (2003)

17. Tzikas, D., Likas, A., Galatsanos, N.: Sparse Bayesian modeling with adaptive kernel learn-
ing. IEEE Trans. on Neural Networks 20(6), 926–937 (2009)

18. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
19. Xu, X., Hu, D., Lu, X.: Kernel-based least squares policy iteration for reinforcement learning.

IEEE Transactions on Neural Networks 18(4), 973–992 (2007)
20. Xu, X., Xie, T., Hu, D., Lu, X.: Kernel least-squares temporal difference learning. Interna-

tional Journal of Information Technology 11(9), 54–63 (2005)

	Value Function Approximation
through Sparse Bayesian Modeling
	Introduction
	Markov Decision Processes and GPTD
	The Proposed Method
	Incremental Optimization
	Working in Episodic Tasks and Unknown Environments

	Experimental Results
	Experiments on Simulated Environments
	Experiments on a Mobile Robot

	Conclusions
	Conclusions

